

CROATIA University of Zagreb Faculty of Mechanical Engineering and Naval Architecture Chair of Materials Protection

CROATIA Croatian Socitey for Materials Protection

Economic and Environmental Impact of Traditional Rust Preventives as Compared to Novel Bio-based Temporary Coatings

Boris A. MIKSIC, Ivana RADIC, Ivan STOJANOVIĆ, Eric UUTALA

EUROCORR & ICC, September 3-7, 2017, Prague

Rust preventatives

- Agents used for preservation of metals during shipment, storage, or between processes.
- Forming a temporary protective coating on metal surface, keeping it free from rust.
- Traditionally used oil- and solvent-based products offering sufficient corrosion protection but containing hazardous ingredients; not readily biodegradable.
- Industry turning to "green" bio-based products.

Guiding thought

RUST

Selection

- A proper selection of rust preventative depends on:
 - storage and/or transport conditions,
 - protection period,
 - economic impact.
- In addition the product should:
 - provide no interference with the function of the metal part or surface,
 - be safe and friendly to the environment and the workers using it,
 - be easy to remove from surface after usage.

Goal of research

- The goal of this research is to show that bio-based products may inhibit corrosion as well as their traditional oil- and -solvent based counterparts, without negative environmental considerations.
- The corrosion parameters as well as economic properties of five different rust preventatives used for temporary corrosion protection was studied.

Study

- 1 bio-based which combines film-forming additives with vapor phase corrosion inhibitors (VpCI) and
- 4 conventional solvent- and oil- based products, which leave a temporary waxy protective film on metal surface.

Label	Manufacturer	Туре	Density [g/cm³]	Flashpoint [°C]	General description
INH1	Cortec Corp. BioCorr	water/bio	1.00-1.01	not applicable	waterbased, biobased and biodegradable, VOC-free
INH2	Fuchs	solvent	0.91	200	concentrate dilutable with white sprit (70:30)
INH3	Castrol	solvent	0.8	> 38	rust inhibitor that leaves an ultra- thin greasy film
INH4	Houghton	solvent	0.799	48	rust inhibitor that leaves waxy film
INH5	Fuchs	mineral base oils / solvent	0.79	40	mixture based on mineral base oils and corrosion preventative agents in volatile hydrocarbons

Economical study

- The cost analysis is performed according to:
 - market price of the product,
 - disposal cost, based on European Waste Catalogue number,
 - transport cost, based on 100 liters of product,
 - warehousing cost.

Label	Cost [EUR/I]	Disposal cost [EUR/I]	Transport cost [EUR/I]	Warehousing cost [EUR/I]	Total cost [EUR/I]	Protection time /indoor storage [months]
INH1	2.52	0.27	0.45	0.03	3.27	24
INH2	4.44	0.573	0.45	0.03	5.49	12-36
INH3	4.75	0.427	0.56	0.04	5.78	9
INH4	5.84	0.573	0.56	0.04	7.01	12
INH5	2.99	0.427	0.56	0.04	4.02	6-12

INH1 > **INH5** > **INH2** > **INH3** > **INH4**

Lowest to Highest

Experimental study

- Resistance to humidity environment; accelerated corrosion testing using a humidity chamber, in an effort to simulate conditions during transport and shipping.
- Corrosion inhibition efficiency; electrochemical testing by means of polarization techniques on Potenciostat 237A / SoftCorr III, after 1 and 120 hours in fresh water.
- Cleanability; easy removal ensures protected metal components can be quickly used, minimizing downtime and maximizing production output.

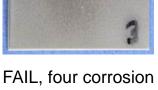
Rust preventative application

- The carbon steel samples, dimension 60x100x1 mm, were polished with sandpaper (240 grit), immersed in methanol for 5 minutes, dipped in rust preventatives for 30 minutes, and then allowed to air dry for 24 hours.
- Before testing, thickness measurement was performed using gravimetric method.

Sample	Label	Density [g/m³]	Weight of applied rust preventative [g]	Surface [m²]	Film thickness [µm]	Average film thickness [µm]	
1	INH1	1000	0.0226	0.012	1.8833	1.3833	
11		1000	0.0106	0.012	0.8833	1.3033	
2	INH2	910	0.1068	0.012	9.7802	10.2747	1 10x
22		910	0.1176	0.012	10.7692	10.2747	
3	INH3	800	0.0116	0.012	1.2083	1.2135	
33	111113	800	0.0117	0.012	1.2187	1.2135	
4	INH4	799	0.0188	0.012	1.9608	2.0598	
44	11NF14	799	0.0207	0.012	2.1589	2.0090	
5		790	0.0087	0.012	0.9177	0.8808	
55	UNLIO	INH5 790	0.0080	0.012	0.8439	0.0000	

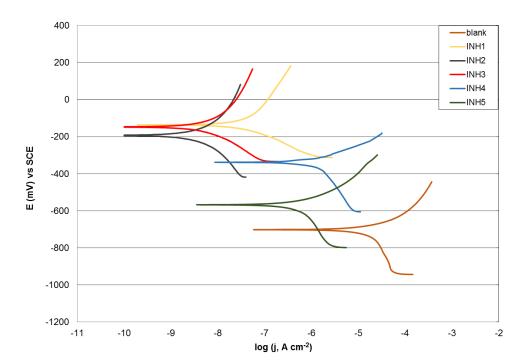
Humidity chamber testing

- ISO 6270-2 (RH 100% and 40 ± 3 °C)
- 600 hours in C&W Humidity cabinet, model AB5
- Atmosphere of constant condensing humidity, representing warehouse and/or transport environment.
- Pass/fail evaluation in accordance to ASTM D-1748 (three spots, smaller than 1 mm, allowed)


Humidity chamber testing

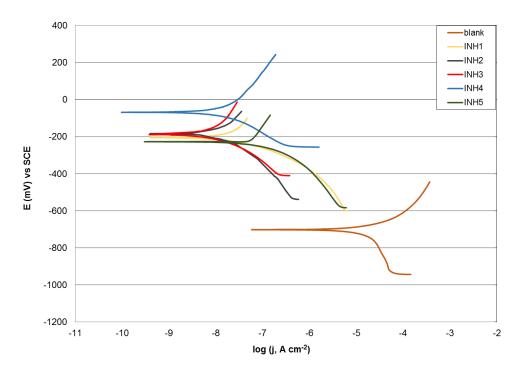
PASS, two corrosion spots observed smaller than 1 mm

FAIL, first signs of localized corrosion occur at 100 hours, larger than 1 mm


spots observed

PASS, one corrosion spot observed smaller than 1 mm

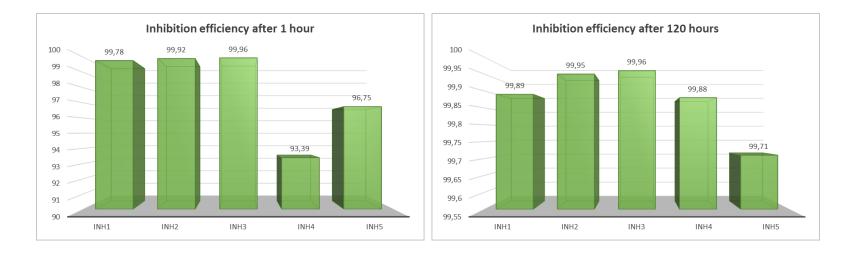
PASS, one corrosion spot observed smaller than 1 mm


Polarization measurements after 1 hour in fresh water

- compared to unprotected carbon steel (blank curve)
- corrosion current density decreased with introduction of rust preventatives
- potential shift to noble values

Sample	E _{corr} [mV]	j _{corr} [μΑ/cm²]	β _a [V/dek]	β _c [V/dek]	V _{corr} [mm/god]
blank	-686	25.87	117.1×10 ⁻³	768×10 ⁻³	170.8×10 ⁻³
INH1	-136	55.18×10 ⁻³	393.4×10 ⁻³	136.9×10 ⁻³	364.2×10 ⁻⁶
INH2	-194	19.93×10 ⁻³	942.1×10 ⁻³	708.4×10 ⁻³	131.6×10 ⁻⁶
INH3	-149	10.16×10 ⁻³	341.1×10 ⁻³	203.5×10 ⁻³	67.06×10 ⁻⁶
INH4	-338	1.709×10 ⁻³	123.4×10 ⁻³	413.6×10 ⁻³	11.28×10 ⁻³
INH5	-567	841.9×10 ⁻³	125.5×10 ⁻³	553.6×10 ⁻³	5.557×10 ⁻³

Polarization measurements after 120 hours in fresh water

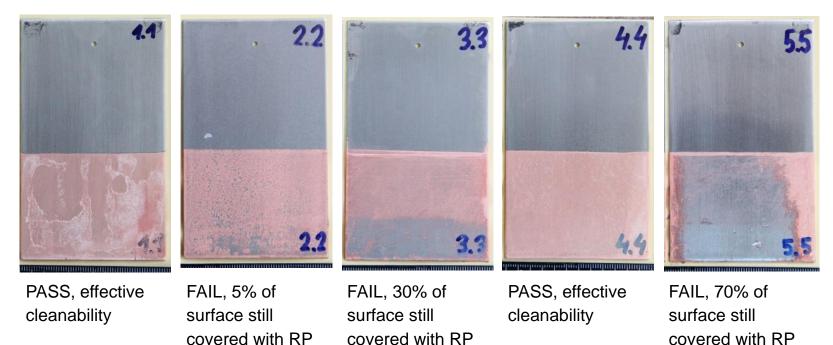


- all tested rust preventatives showed improved inhibition efficiency,
- it can be attributed to a longer period for film forming on the metal surface.

Sample	E _{corr} [mV]	j _{corr} [μΑ/cm²]	β _a [V/dek]	β _c [V/dek]	v _{corr} [mm/god]
blank	-686	25.87	117.1×10 ⁻³	768	170.8×10 ⁻³
INH1	-205	27.99×10 ⁻³	445.8×10 ⁻³	82.37×10 ⁻³	184.7×10 ⁻⁶
INH2	-182	13.22×10 ⁻³	128.3×10 ⁻³	214.4×10 ⁻³	87.25×10⁻ ⁶
INH3	-193	9.957×10 ⁻³	398.5×10 ⁻³	82.40×10 ⁻³	65.72×10 ⁻⁶
INH4	-67	31.18×10 ⁻³	473.0×10 ⁻³	194.5×10 ⁻³	205.8×10 ⁻⁶
INH5	-226	76.10×10 ⁻³	174.3×10 ⁻³	110.3×10 ⁻³	502.3×10 ⁻⁶

Inhibition efficiency

$$\eta_i = \frac{(v_{corr})_{ni} - (v_{corr})_i}{(v_{corr})_{ni}} \cdot 100\%$$



INH3 > INH2 > INH1 > INH5 > INH4

INH3 > INH2 > INH1 > INH4 > INH5

Cleanability evaluation

- By dipping into a copper sulphate plating solution
- Results:
 - INH1 and INH4 showed effective cleanability
 - INH2 showed moderate cleanability
 - INH3 and INH5 showed insufficient cleanability.

CONCLUSION

The results of this study are summarized as follows:

- Three of the five rust preventatives passed 600 hours of humidity testing; including bio-based product, along with two of the solvent based products.
- Higher thickness of rust preventative didn't provide better corrosion protection. Furthermore, increased thickness had a negative influence on cleanability.
- Bio-based rust preventatives offer optimal corrosion protection, with no increase in protection cost, compared to petroleum-based and hazardous rust preventatives.

Welcome to MTECH 2017 INTERNATIONAL CONFERENCE ON MATERIALS: corrosion, heat treatment, materials testing and tribology Zadar, Croatia, 4-7 October 2017 www.mtech.com.hr