INFLUENCE OF CRYSTALLINE STRUCTURE AND PARTICLE SIZE OF VAPOR CORROSION INHIBITOR POWDERS ON THEIR INHIBITING EFFECTIVENESS

Behzad Bavarian, Babak Samimi, Lisa Reiner
Dept. of Manufacturing Systems Engineering & Management
College of Engineering and Computer Science
California State University, Northridge, USA 91330

Boris Miksic, FNACE
Cortec Corporation
4119 White Bear Parkway
St. Paul, MN 55110

March 8, 2016
Corrosion Inhibitors

- Corrosion inhibitors can adsorb to a metal surface, protecting it from the environment by forming a non-reactive, hydrophobic layer that prevents corrosion.
- To be effective, an inhibitor will interact with the anodic or cathodic sites to slow reactions.
- Vapor Phase Corrosion Inhibitors (VCIs) rely on vapor pressure for transport of active inhibitor compounds.
- VCIs form a bond with the metal surface and create a barrier layer to minimize corrosive ions on the surface.
How VCI Inhibitor Works

- VCIs use compounds that work by forming a monomolecular film between the metal and the water. In film forming inhibitors, one end of the molecule is hydrophilic and the other hydrophobic.
NANO-VCI Mechanism

• NANO-VCIs transport inhibitor to the metal surface and interact with the metal substrate to form a protective film.
• When added to a liquid coating, the inhibitors become active.
• A good level of corrosion protection can be obtained with an inhibitor that forms a passive micro-phobic layer on the metal surface using micron sized powder particles in water.
Particle Size

Relative size for particles, aggregates and corrosive species.
Particle Size Influence

- Particle size variation can lead to ingress of corrosive species that may attack the surface of the metal.
Adsorption Isotherms

Atomic models for possible types of surface coverage, monolayer or multiple particle deposition on the metal.
Adsorption Isotherm - Langmuir

• Irving Langmuir developed an isotherm that models gases adsorbed to solid surfaces.
• It is a semi-empirical isotherm with a kinetic basis derived from statistical thermodynamics.
• It is the most common isotherm equation to use due to its simplicity and its ability to fit a variety of adsorption data. It is based on four assumptions:
 1. All adsorption sites are equivalent and each site can accommodate only one molecule.
 2. The surface is energetically homogeneous and adsorbed molecules do not interact.
 3. There are no phase transitions.
 4. Only a monolayer is formed. Adsorption only occurs on localized sites on the surface, not with other adsorbates.
BET Model

• BET model (an isotherm developed by Stephen Brunauer, Paul Emmett, and Edward Teller), given that the four assumptions made to fit the Langmuir isotherm model are, in general, not realistic, it is assumed that the molecules may form multilayers.
Experimental Procedure

- Corrosion behavior of carbon steel (UNS G10180) samples were studied in two different vapor corrosion inhibitors with coarse particles size (~150 um, VCI-A-C) and vapor corrosion inhibitors with nanoparticles size (<500 nm, VCI-A-N), Dense Phase Mill (DPM) is a special pulverizer for heat sensitive powders, Corrosion tests using the NACE TM 208-2008 Standard Test Method.

- The vapor inhibiting ability (VIA) of various forms of VCI materials for temporary corrosion protection of ferrous metal surfaces was used.
Comparison of Particle Size

VCI-A Nano-size particle

VCI-A Coarse particle
The VIA Corrosion Test Method, NACE TM 208

- The VIA corrosion test method provides for standard conditions in a test jar of warm air, saturated with water, absent any contaminants.
- Water vapor and VCI transport were confirmed and corrosion protection was evaluated in this test method.
- The VIA tests consisted of four steps of sample conditioning (saturation) for 20 hours at 22 °C, cooling cycle at 2°C, pre-warming at 50°C, followed by three hours at 22 °C for specimen conditioning.
- After the last three hour conditioning period, the steel samples were inspected for visible water condensation. Following verification of water condensation on each sample,
- Visual examination of the surface was done and microscopic observation was conducted to determine the corrosion rating for each sample.
- The corrosion criteria for rating: grade 0 through grade 4.
- To have a valid test, control samples must have grade 0; samples with no inhibitor received worst grade.
- The control samples consistently rated a grade 0 for all VIA tests, therefore, validating the test method. Relative humidity and the temperature of each test jar were monitored by (Sensirion) sensors and data logging software.
Typical visual patterns for rating VIA test results

Grade 0
- Controls
- No corrosion-protective effect

Grade 1
- Controls
- Slight corrosion-protective effect

Grade 2
- Controls
- Moderate corrosion-protective effect

Grade 3
- Controls
- Good corrosion-protective effect

Grade 4
- Same as Grade 3 except examined under 10X magnification.
- Excellent corrosion-protective effect.
Temperature and RH% monitoring during the VIA TM 208 tests on VCI A
Photographs after VIA Tests

The corrosion rating per TM-208 indicated: control sample had Grade 0, while VCI-A coarse rating was Grade 2, and VCI-A Nano rating was Grade 4.
Optical Micrographs

Optical micrographs of steel samples after VIA tests; superior performance is seen for VCI-A Nano exposed samples.
SEM Micrographs

SEM micrographs of steel sample after VIA tests. Superior performance for VCI-A Nano exposed samples. The black dots on the VCI-A Nano samples are mainly alloy inclusions.
Corrosion Rate

Comparison of corrosion behavior of different particle size for VCI-A in 200 ppm chloride solution for UNS G10180 steel.
Resistance Polarization

Comparison of Corrosion Behavior of different particle size of VCI-A in 200 ppm Chloride solution for UNS G10180 steel.

Comparison of polarization resistance for different particle size of VCI-A in 200 ppm chloride solution for UNS G10180 steel.
The Adsorption Isotherm Relationship

• The adsorption isotherm relationship between surface coverage and temperature for both VCI-A coarse and VCI-A Nano inhibitors on the surface of steel is roughly:
• -16,740 J/mol for the nanoparticle size inhibitor, and -13,660 J/mol for the coarse-particle size inhibitor.
• This energy range is indicative of a strong physical adsorption to the metal surface. However, it can be seen that interaction of VCI-A Nano with the steel surface is higher than the coarse inhibitor, leading to better corrosion protection. The size effect of this inhibitor appears to be more pronounced at higher temperature than the room temperature.
• XPS depth profiling analysis showed ~ 60-80 nm of adsorbed inhibitor on the exposed samples, indicating that multilayer Brunauer Emmett Teller Model (BET Model) is more realistic adsorption model than the monolayer Langmuir model for this case. But for the adhesion energy calculation between inhibitor molecules and metal surface, it is appropriate to use the monolayer Langmuir model.
Adsorption Energy

The adsorption isotherm relationship between surface coverage and temperature for VCl inhibitor on the surface of steel. Adsorption energy was roughly -16,740 J/mol for the nanoparticle size inhibitor, while, adsorption energy was roughly -13,660 J/mol for the coarse-particle size inhibitor.
Conclusions

- The nano-particle inhibitor showed best corrosion rating grade of 4 (after VIA tests).
- Electrochemical corrosion tests showed more than 41% decreased corrosion rate for the nano-particle inhibitor.
- Surface coverage also appeared to improve due to the increased effective surface area and increased partial pressure of vapor inhibitors as powder particle size decreased.
- Adsorption energy was roughly -16,740 J/mol for nano-particle size inhibitor, and -13,660 J/mol for the coarse-particle size, indicating strong physical adsorption to the metal surface for both inhibitors.
- VCI-A Nano showed a stronger interaction with steel surface than the coarse inhibitor, leading to better corrosion protection.
How to measure Flowability and particle Velocity?

• **Almost all** industrial flows are turbulent.
• **Almost all** naturally occurring flows on earth, in oceans, and atmosphere are turbulent.

$$
\rho \frac{Du_i}{Dt} = \frac{\partial \tau_{ij}}{\partial X_j} + \rho f_i - \frac{\partial p}{\partial X_j}
$$

• Turbulent motion is 3D, vortical, and diffusive
 \iff governing Navier-Stokes equations are very hard (or impossible) to solve.
• Measurements are easier
Current research activities
Flowability and particle Velocity measurements

Particle Image Velocimetry (PIV):
Imaging of tracer particles, calculate displacement: local fluid velocity

Frame 1: $t = t_0$
Frame 2: $t = t_0 + \Delta t$

Twin Nd:YAG laser
Light sheet optics
Measurement section
CCD camera
Laser Doppler velocimetry (LDV)

is the technique of using the Doppler shift in a laser beam to measure the velocity in a flows, or the linear or vibratory motion of particles. The measurement with LDA is absolute, linear with velocity and requires no pre-calibration.

LDA
A high resolution -single point technique for velocity measurements in turbulent flows

Basics:
Seed flow with small tracer particles
Illuminate flow with one or more coherent, polarized laser beams to form a MV (measurement volume)
Receive scattered light from particles passing through MV and interfere with additional light sources
Measurement of the resultant light intensity frequency is related to particle velocity
Fine VCI, 20 psi flow pressure

Coarse VCI, 20 psi flow rate
Measurement of velocity profiles in of VCI in box chamber