

03 30 00	Cast in Place Concrete
03 40 00	Precast Concrete
03 70 00	Mass Concrete

MCI[®]-2005 Patented

DESCRIPTION

MCI[®]-2005 is a water-based, organic, corrosion inhibiting admixture for protection of metallic reinforcement in concrete structures

When incorporated into concrete, MCI-2005® forms a protective, monomolecular layer on embedded metals that inhibits corrosion and provides set retarding effects. In new construction, this is quantified by an increase in critical chloride threshold and subsequent reduction in corrosion rates when corrosion does initiate. When used with repair mortars and grouts, MCI[®]-2005 not only protects rebar within the patch, it is able to migrate into undisturbed concrete adjacent to the repair, to protect reinforcement already in place.

MCI[®]-2005 has been awarded the USA BioPreferred[™] designation (www.biopreferred. gov).

UFI: A630-K05W-N001-4GEM

PACKAGING & STORAGE

Available in 5 gallon (19 L) pails, 55 gallon (208 L) drums, and 265 gallon (1000 L) totes.

Store away from direct sunlight and at ambient temperatures – above 32°F (0°C) and up to 131°F (55°C). When properly stored, MCI[®]-2005 has a shelf life of 24 months.

HOW IT WORKS

MCI[®]-2005 is an organic corrosion inhibitor and set retarding admixture. It is considered ambiodic (mixed), meaning it protects both anodic and cathodic areas within a corrosion cell. MCI[®]- 2005 contains a blend of amine salts of carboxylic acids which form a protective layer on embedded reinforcement delaying the onset of corrosion as well as reducing existing corrosion rates.

MCI[®]-2005 is effective at enhancing the durability and extending the service life of concrete structures exposed to corrosive environments (carbonation, chlorides, and atmospheric attack).

WHERE TO USE

- Reinforced concrete including precast, pre-stressed, and post-tensioned structures
- Used in repair mortars and injection mixtures
- Corrosive environments including exposure to deicing salts, saline groundwater, airborne chlorides, and carbonation
- Marine and coastal structures, highways and bridges, parking decks, balconies, pools, concrete tanks, pilings, substructures, piers, pillars, pipes, and utility poles

ADVANTAGES

- Certified to meet multiple global standards including:
 - EN 934-2 requirements
 - ASTM C1582 requirements
 - ANSI/NSF Standard 61 for use in structures holding potable water
- Complies with CSA S413, Section C1.2, for corrosion inhibiting admixtures
- Earns credit towards LEED certification
- Lower toxicity and environmental impact than traditional corrosion inhibiting admixtures such as calcium nitrite
- Low dosage rate with minimal effect on concrete properties (i.e. workability, strength development, air entrainment, etc.)
- Single dosage rate which is independent of expected chloride exposure
- Minimal effect on concrete properties (i.e. workability, strength development, air entrainment, etc.)
- Ability to migrate through porous substrates (concrete, masonry, limestone, etc.) by capillary action, vapor diffusion and ionic attraction
- · Field and lab tested worldwide

MCI[®]-2005 Patented

PHYSICAL PROPERTIES

Appearance	Clear dark brown liquid
рН	9.5-11.5 (1% solution)
Non-volatile Content	40.85-45.15 %
Density	1.2 ± 0,03 g/cm ³
Shelf Life	24 months

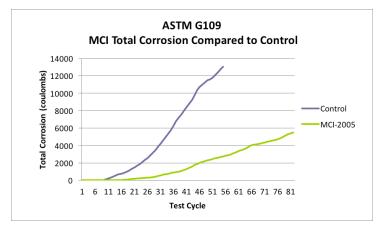
DOSAGE

Add MCI[®]-2005 to concrete mix or repair mortars at 0.6 l/m³. Dosage is fixed and independent of chloride levels.

APPLICATION

MCI[®]-2005 is best added with the mix water into ready mix concrete at the plant. Alternatively, it can be dosed into the ready-mixtruck using portable dosing equipment. Concrete should be mixed thoroughly before placement.

STANDARD TEST RESULTS


Slump	ASTM C143	Neutral		
Slump	EN 934-2:2012, T8	Pass		
Air Content	ASTM C231	Neutral		
Air Content	EN 934-2:2012, T8	Pass		
Density	ASTM C138	Neutral		
Density	EN 934-2:2012, T8	Pass		
Set Time	ASTM C403	Delayed		
Set Time	EN 934-2:2012, T8	Pass		
Flexural Strength	ASTM C78	Improved		
Compressive	ASTM C192	Improved		
Strength	EN 934-2:2012, T8	Pass		
	ASTM C1582	Meets Requirements		
Corrosion Properties	STM G180	meets Requirements		
Biobased Content	ASTM D6866	67%		
Workability	N/A	No adverse effects when used with pozzolans or other high performance concrete admixtures		
Corrosion properties when used as set retarding admixture	EN 934-1:2008	Pass		

ASTM C1582 PHYSICAL PROPERTY RESULTS								
Setting Time								
	Control	MCI 2005	Relative to Control	Relative to Control ASTM C1582 Requirement				
Initial Set (Minutes)	312	431	+119	+/- 210 Min of Control	Meets Requiremen			
Final Set (Minutes)	404	524	+120	+/- 210 Min of Control	Meets Requiremen			
Compressive Strength								
3 Day (psi)	3290	3647	111%	Min 80% of Control	Meets Requiremen			
7 Day (psi)	4070	4377	108%	Min 80% of Control	Meets Requiremer			
28 Day (psi)	5143	5330	104%	Min 80% of Control	Meets Requiremer			
6 Month (psi)	6077	6650	109%	Min 80% of Control	Meets Requiremer			
1 Year (psi)	6463	6877	106%	Min 80% of Control	Meets Requiremer			
		Flexur	al Strength					
3 Day (psi)	585	591	101%	Min 80% of Control	Meets Requiremer			
7 Day (psi)	661	691	104%	Min 80% of Control	Meets Requiremer			
28 Day (psi)	757	797	105%	Min 80% of Control	Meets Requiremer			
		Sh	rinkage					
Length Change (%)	-0.025	-0.021	0.004	Max 0.010 Over Control	Meets Requiremer			
		Du	irability					
Freeze/Thaw Durability	99.1	98.8	99.8	RDF 80%	Meets Requiremer			

ASTM C1582 CORROSION PROPERTIES - ASTM G180 RESULTS											
Sample	Potential	Rp	1/Rp	Log (1/Rp)	$\log(1/D_{\rm P})$	Area (cm²)	Dosage	Mean 1/Rp	SD 1/Rp	Log (1/Rp)	
Sample	mV (SSC)	(Ohms)	(µS/cm²)		(T/Rp) Area (CIII-)	(L/m³)	(µS/cm²)	(µS/cm²)	LUG(I/KP)	Log SD	
Cortec [®] -1	-509	8192	23.85	1.38	5.12	5.12 5.11 5.12 0.60	38.91	21.29	1.33	0.29	
Cortec [®] -2	-530.6	3626	53.96	1.73	5.11						
Cortec [®] -3	-500.2	9373	20.85	1.32	5.12						
Cortec [®] -4	-457.9	24360	8.10	0.91	5.07						
Controls (13) Average of Results	Average of -522.9 Average				0	394.71	214.21	2.49	0.35		

The results from the inhibitor tests were compared to 13 control runs on the same steel heat, and using the same cement in lab database. The comparison shows that MCI®-2005 reduces the corrosion current (1/Rp) by a factor of ten so it meets the ASTM C1582 requirement of being 1/8 the value (49.3 µS/cm²) of the control specimens without inhibitor.

ASTM G109 RESULTS

ASTM G109 - Standard Test Method for Determining Effects of Chemical Admixtures on Corrosion of Embedded Steel Reinforcement in Concrete Exposed to Chloride Environments

MCI[®]-2005 doubles the time to the onset of corrosion and reduces corrosion currents by 80% compared to untreated samples.

Property	Unit	Test results		
rioperty		Control	Test mixture	
Slump – fresh mortar	mm	225	229	
Water/cement ratio		0,50	0,49	
Initial setting time		375	510	
Difference of initial setting time	min	-	+135	
Final setting time		530	645	
Difference of final setting time		-	+115	

SET RETARDING EFFECTS ACCORDING TO EN 934-2:2012*

*Test report number 72530-LB/20+21/20 INSTITUTE IGH d.d. Zagreb

CONSIDERATIONS

The use of MCI[®]-2005 causes a delay of initial setting time. The extent of this delay is dependent on the mix design, temperature and humidity. The combination of MCI[®]-2005 with certain superplasticizers can also increase the set delay experienced. Concrete properties are always best determined in a trial using the actual mix components. CorteCros recommends a trial batch anytime you are using MCI[®]-2005 with new mix components.

Consult with CortCros' Technical Support Department for further guidance if necessary.

Revised: 12/13/2021. All Rights Reserved. Copying and/or manipulation of these materials in any form without the written authorization of CorteCros d.o.o. is strictly prohibited. 2020, CorteCros d.o.o. ISO accreditation applies to CorteCros d.o.o. processes only.