
D
m

Z
a

b

c

a

A
R
R
A

K
T
B
A
T
B

1

l
t
a
d
w
i
t
m
s
s
d
f
r
i
n
m

y

1
d

Process Biochemistry 45 (2010) 993–1001

Contents lists available at ScienceDirect

Process Biochemistry

journa l homepage: www.e lsev ier .com/ locate /procbio

egradation of 2,4,6-trinitrotoluene (TNT) by immobilized
icroorganism-biological filter

hongyou Wanga, Zhengfang Yea,∗, Mohe Zhanga,b, Xue Baic

The Key Laboratory of Water and Sediment Science, Ministry of Education, Department of Environmental Engineering, Peking University, Yi Heyuan Road 5, Beijing 100871, China
The Key Laboratory of Urban Human Residential Environmental Science and Technology, Peking University, Shenzhen Graduate School Peking University, Shenzhen 518055, China
College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China

r t i c l e i n f o

rticle history:
eceived 10 October 2009
eceived in revised form 28 February 2010
ccepted 6 March 2010

eywords:
NT
iodegradation

a b s t r a c t

The combined process of immobilized microorganism-biological filter was used to degrade TNT in
an aqueous solution. The results showed that the process could effectively degrade TNT, which was
not detected in the effluent of the system. GC/MS analysis identified 2-amino-4,6-dinitrotoluene (2-
A-4,6-DNT), 4-amino-2,6-dinitrotoluene (4-A-2,6-DNT), 2,4-diamino-6-nitrotoluene (2,4-DA-6-NT) and
2,4-diamino-6-nitrotoluene (2,6-DA-4-NT) as the main anaerobic degradation products. In addition, the
Haldane model successfully described the anaerobic degradation of TNT with high correlation coefficients
(R2 = 0.9803). As the electron donor, ethanol played a major role in the TNT biodegradation. More than
naerobic degradation kinetic
NT metabolites
acterial community

twice the theoretical requirement of ethanol was necessary to achieve a high TNT degradation rate (above
97.5%). Moreover, Environment Scan Electron Microscope (ESEM) analysis revealed that a large number
of globular microorganisms were successfully immobilized on the surface of the carrier. Further analy-
sis by Polymerase Chain Reaction (PCR)-Denaturing Gradient Gel Electrophoresis (DGGE) demonstrated
that the special bacterial for TNT degradation may have generated during the domestication with TNT
for 150 days. The dominant species for TNT degradation were identified by comparing gene sequences

with Genebank.

. Introduction

Due to its low melting point, chemical and thermal stability,
ow sensitivity to impact, friction, and high temperature, 2,4,6-
rinitrotoluene (TNT) is a widely used explosive [1]. Since it is toxic
nd mutagenic to humans and animals at low concentrations [2–5],
econtamination is necessary. Physical and chemical methods have
idely used to treat TNT wastewater or soils contaminated by TNT,

ncluding advanced oxidation [6–8], adsorption [9], and incinera-
ion. Each of these methods has its limitations. Incineration is the

ost effective and widely used process, but the method is expen-
ive due to the cost of fuel [10]. Moreover, it usually generates
econdary pollution during the treatment [11,12]. Advanced oxi-
ation demands high level of reaction conditions and is difficult
or TNT plants to carry out. Problems with adsorption include the

etention of untreated compounds on granular activated carbon,
ncomplete degradation of TNT and the requirement of additional
utrients [13]. Therefore, recent studies have focus on the biotreat-
ent, which is both highly efficient and cost-effective.
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Most previous studies on TNT biodegradation addressed the
treatment of TNT contaminated soils [14–16]. There have been only
a few studies [17,18] on the degradation of TNT in an aqueous solu-
tion. Furthermore, the literature contains few detailed reports on
the process of TNT degradation using immobilized microorganisms.
The immobilized microorganisms process has been widely used to
treat refractory wastewater, including landfill leachate [19], coking
effluent [20,21], oil field wastewater [22], textile wastewater [23],
phenols and dye wastewater [24–28]. Both Biological Aerated Filter
(BAF) and Anaerobic Filter (AF) are types of immobilization reac-
tor that can maintain high hydraulic loading rates while retaining a
high biomass concentration [22,29–31]. This reduces the environ-
mental shock, resulting in less sludge formation, and promoting the
growth of microorganisms [20].

This paper reports a laboratory study evaluating the capability of
immobilized microorganisms to degrade TNT. Early studies [5,17]
on the biodegradation of TNT suggested that TNT was resistant to
biological treatment in aerobic process such as the activated sludge
system. As shown in previous studies [32], anaerobic biological

processes could transform toxic organic compounds such as poly-
chlorinated phenols and nitroaromatics, which were considered to
be recalcitrant to aerobic treatment processes. The metabolites of
anaerobic reaction could be degraded effectively by aerobic biolog-
ical processes. Therefore, the process of AF combined with BAF was

http://www.sciencedirect.com/science/journal/13595113
http://www.elsevier.com/locate/procbio
mailto:wangzhongyou@iee.pku.edu.cn
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Table 1
Composition of trace element.

Composition Concentration (mg l−1)

FeCl2·4H2O 35
CaCl2·2H2O 30
CoCl2·6H2O 2
KI 2.5
MnCl2·6H2O 0.5

d
o
m
p
[
b
w
i
o
k
s

2

2

2

t
a
d
e
o

2

E
a
t
l
c
t
m
m

2

B
a
o

2

o
t
T
v
h
i
t
c

2

2

C
s
p
s
m

ZnCl2 1
Na2MoO4 0.5
H3BO4 1.5

eveloped in the present study. Microorganisms were immobilized
n the special carrier [33] and filled in the two filters. To study the
etabolites of TNT, GC/MS was employed to detect the degradation

roducts. PCR-DGGE, previously applied to research on wastewater
34] and contaminated soils [35] treatment, was used to analyze the
acterial community structure of the two reactors. ESEM analysis
as conducted to determine whether the microorganisms could be

mmobilized on the special carrier and to obtain the morphology
f the immobilized microorganisms. Furthermore, the degradation
inetics model and effect of ethanol on TNT degradation were also
tudied.

. Materials and methods

.1. Materials

.1.1. Wastewater
TNT was supplied by the Number 375 ammunition plant. The wastewater used in

he experiment was simulant water. The TNT concentration of the wastewater was
bout 2.77–94.62 mg l−1. Ethanol was added into the wastewater as the electron
onor, and the concentration was about 100 mg l−1. In addition, KH2PO4 and trace
lement solution were also put in the wastewater. Table 1 shows the composition
f trace elements.

.1.2. Reactor system
Fig. 1 shows the two upflow and submerged biological filters used in this study.

ach reactor is made of polymethyl methacrylate and has an effective volume of 3.9 l,
diameter of 100 mm, and a height of 500 mm. Air diffusers are located 50 mm from

he downside inlet. The self-made patented FPUFS [33] carrier was used to immobi-
ize microorganisms. The synthesized polymer carrier is a 20 mm×20 mm×20 mm
ube employed as exclusively fluidized media. The pores in the carrier guaran-
ee better three-phase mixing of air, wastewater and carrier, and add three-phase

ass transfer propulsion. At the same time, the pores can be used to immobilize
icroorganisms.

.1.3. Immobilized microorganisms
The microorganisms called B925 used in the study were purchased from

IONETIX Co. (Canada). The marked performance of microorganisms in degrading
romatic compounds has been investigated experimentally [36,37]. In the study, 5 g
f B925 microorganisms were placed in the each reactor.

.2. Experimental procedure

The test can be divided into two stages, the domestication and immobilization
f the microorganisms, and the stable reaction operation stage. For the first 3 days,
he reactors were filled with the simulant wastewater with a low concentration of
NT and the air blowers were turned on, but with the influent and effluent stream
alves closed. Then wastewater was continuously pumped into the reactors and the
ydraulic retention time (HRT) of the system was 36 h. TNT concentration of the

nfluent was gradually increased and TNT in the effluent was measured daily. When
he biodegradation rate of TNT was higher than 80%, the first stage was basically
omplete and the system began to enter the stable reaction operation stage.

.3. Methods

.3.1. Wastewater quality detection
TNT was quantified by HPLC (Agilent, USA) according to EPA method 8330.
OD was measured by the potassium dichromate oxidation method (Hach heating
ystem, Hach Corporation, USA). pH was detected by pH meter (pH-201, Hanna Cor-
oration, Italy). Measurements of the parameters above were conducted by repeated
ampling, and the results were obtained as mean values. The relative errors of these
easurements were less than 5%.
istry 45 (2010) 993–1001

2.3.2. GC/MS analysis
GC–MS was used to detect the metabolites in the effluent of the reactors. A

200 ml sample of wastewater was extracted by 10 ml of dichloromethane (100%,
Fisher Corporation, USA) three times for pH 2, 7 and 12. The three extract layers
were combined and dried using nitrogen, and the residue was dissolved in a 1 ml
solution of dichloromethane. Then, 1 �l of pretreated sample was analyzed by the
6890N/5973 GC/MS system (Agilent Corporation, USA). Pure He gas (99.999%) was
employed as the carrier gas at flow rate of 1 ml min−1. A DB-35MS capillary column
with inner diameter of 0.25 mm and length of 30 m was adopted in the separation
system. The oven temperature was 280 ◦C. The temperature program was as follows:
40 ◦C for 3 min, from 40 to 280 ◦C at a rate of 3 ◦C min−1 and kept at 280 ◦C for 3 min.
The electron energy and the electron double voltage were set at 70 eV and 1200 V,
respectively.

The substance analysis was conducted with reference to the NIST98 mass spec-
tral library database.

2.3.3. Biology observation
The carrier was moved from the middle part of the reactor to the refrigerator

(−20 ◦C). When the carrier was frozen, we removed it to the freezer dryer and dried
it. Finally, the carrier was photographed with a FEI QUANTA 200F Environment Scan
Electron Microscope.

2.3.4. DNA extraction and purification
20 g (wet weight) of biofilms was added into 20 ml of auto-claved extraction

buffer (100 mM Tris–HCl, 100 mM EDTA–Na2, 200 mM NaCl, 1% PVP, 2% CTAB, pH
8.0). Then 50 �l of 10 mg ml−1 of Proteinase K was added and the mixture was
incubated at 37 ◦C for 45 min while being shaken at 150 rpm. 1.5 ml of 2% SDS
was added to the mixture, which was then incubated at 65 ◦C in a water bath for
1 h and shaken every 10 min. The mixture was then centrifuged at 12 000 rpm for
10 min. The supernatant was collected and extracted three times by mixed organic
reagent (phenol:chloroform:isoamyl alcohol = 25:24:1). The DNA was precipitated
in isopropanol for 12 h at room temperature and then was centrifuged (13 000 rpm,
20 min, 4 ◦C). The precipitate was collected and washed twice with 5 ml of cold 70%
ethanol. After drying, the precipitate was dissolved in 50 �l of Tris–EDTA buffer
solution (pH 8.0).

2.3.5. Amplification of DNA
The variable region V3 of the 16S rDNA was amplified using primers GC-357f

[38] (5′-CGC CCG CCG CGC GCG GCG GGC GGG GCG GGG GCA CGG GGG GCC TAC
GGG AGG CAG CAG-3′) and PRUN518r [39] (5′-ATT ACC GCG GCT GCT GG-3′).

PCR included 41.25 �l of UV-sterile water, 5 �l of MgCl2 (20 mmol l−1), 1.0 �l
of 2,4-DNTP (10 mmol l−1), 1.0 �l of primers GC-357f and PRUN518r (10 �mol l−1),
0.25 �l of Taq polymerase (5 U), and 10 ng of DNA template. The PCR amplification
procedure was as follows: one preliminary at 94 ◦C for 4 min, 30 cycles each involved
denaturation at 94 ◦C for 30 s, anneal at 52 ◦C for 1 min, extended at 72 ◦C for 7 min.
The results were analyzed by 1.2% agarose gel eletrophoresis (120 V, 30 min).

2.3.6. DGGE analysis
Samples of PCR product (50 �l) were loaded onto 8% (w/v) polyacrylamide gels

in 1× TAE buffer (40 mmol l−1 of Tris–HCl, 40 mmol l−1 of ethanoic acid, 1 mmol l−1

of EDTA, pH 8.0). The gel contained a gradient of denaturant ranging from 35 to 65%
(100% denaturant is 7 M urea and 40% deionised formaide). The electrophoresis was
run at 60 V for 20 min and then at 180 V for 5 h. After electrophoresis, the gels were
stained with goldview (Beijing SBS Genetech Co., Ltd.), a new nucleic acid stain.
The gel was photographed with the gel photo system and the photographs were
analyzed with Bio-Rad Quantity One software.

3. Results and discussion

3.1. TNT degradation by biological filter

Fig. 2 shows TNT degradation time history for the combined
process and Fig. 3 is the detailed view. The system operated for
150 days. Because the microorganisms were perhaps unaccommo-
dated to TNT at the early stage, the concentration of TNT in the
influent was held below 5.0 mg l−1 over the first 8 days. Even so,
about 1.2 mg l−1 of TNT was detected in the effluent of the anaer-
obic reactor, which can be seen in Figs. 2 and 3. In addition, the
degradation rate of TNT varied greatly at the early stage, indicating
that microorganisms in the reactor were not well accommodated

to TNT and the system was still in the stage of microorganisms
domestication. After the system had operated 20 days, the concen-
tration of TNT in the influent had increased gradually, but the TNT
in the effluent of the anaerobic and aerobic reactors remained sta-
ble. The mean concentration of TNT in the effluent of the anaerobic
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Fig. 1. Reactor system: (1) clapboard,
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Fig. 2. Efficiency of TNT degradation biological filter.

eactor was below 0.3 mg l−1 and no TNT was detected in the efflu-
nt of aerobic reactor. This demonstrated that the system entered
he stable reaction operation stage after 20 days. Throughout the

table reaction operation stage, TNT was not detected in the efflu-
nt of the aerobic reactor. In other words, the combined process
ould degrade TNT completely. The result was superior to the pre-
ious studies [1–3,40], which used physical and chemical methods

Fig. 3. Detailed view of Fig. 2.
(2) carrier and microorganisms.

or traditional biotreatment. Besides, the system has the advantage
in reducing environmental shock.

3.2. TNT degradation metabolites analysis

TNT degradation metabolites were detected by GC/MS. Fig. 4
shows the organic composition of influent and effluent from the
two reactors. It can be seen from Fig. 4(a) that TNT was the
main organic compound. However, it was reduced to 2-amino-
4,6-dinitrotoluene (2-A-4,6-DNT), 4-amino-2,6-dinitrotoluene (4-
A-2,6-DNT), 2,4-diamino-6-nitrotoluene (2,4-DA-6-NT) and 2,6-
diamino-4-nitrotoluene (2,6-DA-4-NT) during the anaerobic pro-
cess, as shown in Fig. 4(b). The result was in agreement with
previous studies [13,40,41]. As mentioned above, ethanol was
added to the influent, and can be fermented to acetate and H2
by anaerobes [5,42]. It is well known that H2 has strong ability in
reduction and –NO2 can be reduced to –NH2. Therefore, aminodini-
trotoluenes and diaminonitrotoluenes were found in the anaerobic
degradation products. In addition, the relative content of 2,6-DA-4-
NT (51%) was much greater than that of 2,4-DA-6-NT (5%), deviating
from some other reports [41]. The methyl group is the electron-
donating group, while the nitro group is the electron-withdrawing
one. In the molecular structure of TNT, the electron density of the
nitro group beside the methyl group was greater than that of other
nitro groups. So, the nitro group beside the methyl group is more
easily reduced by H2 and there was more 2,6-DA-4-NT than 2,4-
DA-4-NT in the metabolites. According to the above analysis, we
can deduce the proposed degradation pathway of TNT, shown in
Fig. 5. Besides, as shown in Fig. 4(c), no organic compounds were
detected in the effluent of the aerobic reactor, which indicates that
the combined process could effectively biodegrade not only TNT
but also its metabolites.

3.3. Effect of ethanol on TNT degradation

Ethanol has widely been used as electron donor to reduce sulfate
[43], carbonyl compounds [44], uranium [45], selenium oxyan-

ions [46], and so on. However, to date, few reports have been
published on the application of ethanol in TNT degradation, using
immobilized organisms process. In the present study, ethanol was
employed to reduce TNT. It was concluded that ethanol could be
fermented to acetate and H2 under anaerobic conditions [5,42],
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Fig. 4. Spectrum of influent and effluent orga

s shown in Eq. (1). Davel [47] investigated the biodegradation of
NT in a fluidized-bed reactor and put forth the equation of TNT
iodegradation as shown in Eq. (2):

C2H6O+H2O
microorganisms←→ CH3COO− +H+ + 2H2,

G0′ = 9.6 kJ/reaction (1)
1.5C2H6O
(ethanol)

+ C6H2CH3(NO2)3
(TNT)

microorganisms−→ C6H2CH3(NH2)3
(TAT)

+ 3CO2 + 1.5H2O (2)
mponents for anaerobic and aerobic reactors.

The concentration of TNT in the influent was 80 mg l−1. Accord-
ing to Eq. (2), the influent should contain at least 24.3 mg l−1 of
ethanol so as to completely transform TNT to TAT. Fig. 6 illustrates
the effect of ethanol on TNT degradation at different concentrations.
It can be seen that ethanol played a major role in the TNT biodegra-
dation. When the concentration of ethanol was in the range of
100–200 mg l−1, TNT was effectively degraded and the degrada-

tion rate was above 99%. As the concentration decreased from
100 to 50 mg l−1, the degradation rate of TNT slowly decreased.
It was about 97.5% when ethanol was 50 mg l−1. However, while
the concentration of ethanol continued to decrease, TNT in the
effluent began to increase sharply. For growth, microbial used
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ies, several inhibition models of substrate have been tested, and the
Fig. 5. Proposed deg

art of ethanol as an auxiliary carbon source [47]. Therefore, the
emaining ethanol may have been much less than required for the
omplete reduction of TNT to TAT with a low initial concentra-
ion of ethanol. Furthermore, only 30% of the TNT was degraded, as
he concentration of ethanol was 25 mg l−1, a little more than the
heoretical requirement (24.3 mg l−1). This confirmed the expla-

ation discussed above. In addition, it was concluded from Fig. 6
hat approximately more than twice the theoretical requirement
f ethanol was needed to get a high TNT degradation rate (above
7.5%), similar to previous reports [47].

Fig. 6. Effect of ethanol on TNT degradation.
ion pathway of TNT.

3.4. TNT anaerobic degradation kinetics

TNT has been generally known to inhibit the biodegradation
reaction [48]. To describe the anaerobic biodegradation of TNT, it is
necessary to use an inhibition model of substrate. In previous stud-
Haldane model fits to the experimental data best [49,50]. In addi-
tion, the Haldane model has been used successfully to describe the
biodegradation of phenol, but little is known about its application

Fig. 7. Experimental data simulation of the TNT degradation kinetics equation.
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Fig. 8. Carrier and microorganisms observed in reactor by ESEM.
(a) 400× carrier without microorganisms, (b) 200× carrier with biofilm, (c) 2000× carrier with microorganisms in anaerobic reactor at the 20th day, (d) 2000× carrier with
microorganisms in aerobic reactor at the 20th day, (e) 8000× carrier with microorganisms in anaerobic reactor at the 40th day, (f) 16 000× carrier with microorganisms in
anaerobic reactor at the 40th day, (g) 8000× carrier with microorganisms in aerobic reactor at the 40th day, (h) 16 000× carrier with microorganisms in aerobic reactor at
the 40th day.
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Table 2
TNT degradation kinetics date.

Initial concentration (mg l−1) Experimental value
of q [mg (h g)−1]

Theoretical value
of q [mg (h g)−1]

2.65 ± 0.16 0.022 ± 0.001 0.020
4.20 ± 0.31 0.023 ± 0.001 0.031

11.94 ± 0.53 0.068 ± 0.003 0.079
14.84 ± 0.69 0.088 ± 0.004 0.095
15.89 ± 0.76 0.111 ± 0.006 0.100
22.31 ± 1.32 0.152 ± 0.007 0.130
27.85 ± 1.51 0.144 ± 0.007 0.151
39.60 ± 1.85 0.182 ± 0.009 0.182
44.37 ± 2.30 0.183 ± 0.009 0.191
50.70 ± 2.51 0.201 ± 0.011 0.200
60.00 ± 2.95 0.205 ± 0.012 0.209
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for the partial bacterial 16S rDNA sequences. Sequence c showed
99.9% similarity to Pseudomonas sp. SRU 14 (FJ482111). In the pre-
vious reports, strains of Pseudomonas sp. demonstrated a strong
ability in TNT degradation [49,57,58]. In addition, bands a, b, d, f
and g were most closely related to Flavobacteriales sp., Chryseobac-
79.75 ± 3.62 0.230 ± 0.012 0.215
85.60 ± 3.97 0.217 ± 0.011 0.214
94.62 ± 4.66 0.203 ± 0.009 0.212

n TNT biodegradation [49,51]. The Haldane equation is shown in
q. (3).

= qmax

1+ Ks/S + S/Ki
(3)

here q is the specific degradation rate [mg (h g)−1], S is the ini-
ial concentration of TNT (mg l−1), qmax is the maximum specific
egradation rate [mg (h g)−1], Ks is the substrate saturation con-
tant (mg l−1), and Ki is the substrate inhibition constant (mg l−1).

Origin software numerical simulation better fits the experimen-
al data, shown in Table 2. According to the simulation results, qmax,
s and Ki were 0.76 mg (h g)−1, 100.16 mg l−1 and 62.20 mg l−1,
espectively. All the degrees of confidence of the parameters were
.99. Moreover, the kinetic constants obtained were comparable
o those in previous studies [49,52] and the difference maybe
xplained by the various treatment processes and reaction con-
itions. Fig. 7 illustrates the experimental data simulation to the
aldane equation. The simulation curve described the trend of the
xperimental data satisfactorily and the correlation coefficient was
.9803.

.5. Microbiological morphology

The carrier is micro-porous, with each pore’s diameter >200 �m
20,21]. The pores provide space for gas and liquid to pass though
he microorganisms [22]. The carriers in the two reactors were
etected using ESEM when the system had operated 20 and 40 days,
espectively.

Fig. 8(a) shows the carrier without microorganisms immobi-
ization; Fig. 8(b) shows the carrier with microorganisms. The

icroorganisms were successfully immobilized onto the inside and
utside surface of the carriers. The pores were not blocked by
he biofilm and they permitted the gas and liquid to transfer effi-
iently to the microorganisms as before. Fig. 8(c) and (d) shows the
icroorganisms immobilized on the carriers after the reactors had

een operating for 20 days. The carriers both in the anaerobic reac-
or and the aerobic reactor were immobilized with many globular

icroorganisms. Moreover, some bacilli were found in the anaero-
ic reactor. Fig. 8(e)–(h) shows the carriers and the microorganisms
fter 40 days of reactor reaction. The figure shows that the microor-
anisms flourished in the reactors with longer operation time. A
arge number of globular microorganisms were immobilized on the
urface of the carriers from the anaerobic reactor. These globular

icroorganisms may play an important role in the reduction of TNT.
s Fig. 8(g) shows, most of the globular microorganisms were pack-
ged in biofilm. In addition, after the system had operated 20 days,
ome protozoa were found in the aerobic reactor, representing the
ealthy operating state of the aerobic reactor in concurrence with
istry 45 (2010) 993–1001 999

earlier research [22]. Fig. 2 shows that no TNT was detected in the
effluent of the aerobic reactor after the system had operated 20
days, confirming the hypothesis.

3.6. Bacterial community analysis

The method of PCR-DGGE based on 16S rDNA and denaturing
gradient gel electrophoreses fingerprinting technology has been
increasingly used to assess changes in microbial communities
[53,54]. However, most researchers have ignored the application
of PCR-DGGE to the treatment of TNT wastewater. The strength
of DGGE as a screening method for diversity is its ability to
monitor spatial and temporal changes in community structure in
response to changes in environmental parameters [55]. In this
study, PCR-DGGE was employed to investigate the changes in
microbial community structure in both reactors after 150 days
of operation. The dominant bacteria for TNT degradation was
identified. Fig. 9 shows DGGE profiles of amplified 16S rDNA frag-
ments from the samples. Each of the distinguishable bands in
the separation pattern represents an individual bacterial species
[56].

Fig. 9 shows that lane A, with 19 as its Shannon diversity index
(H′), had more bands than lanes B and C. Compared to lane A, the
H′ values of lanes B and C were only 15 and 14, respectively. More-
over, some bands in lane A were not found in the same position of
lanes B and C. This indicates that some bacterial groups unaccom-
modated to TNT died out after the system operated for 150 days.
In addition, some bands (b, f and g) were found at the same posi-
tion in lane A, demonstrating that B925 contained some dominant
bacterial groups for TNT degradation. Besides, some special crisp
bands (a, c, d and e) were found in lanes B and C, indicating the
special bacterial for TNT degradation may have generated during
the domestication with TNT for 150 days.

To identify the specific dominant species in the bacterial com-
munity, specific bands were excised from the gel, and sequenced
and compared with Genebank. Fig. 10 shows the phylogenetic trees
Fig. 9. DGGE profiles of amplified 16S rDNA fragments from the samples (lanes
A–C: microorganisms B925, microorganisms in anaerobic reactor, microorganisms
in aerobic reactor, respectively).
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ig. 10. Phylogenetic trees for the partial bacterial 16S rDNA sequences. The tree w
nd are shown where >50.

erium sp., Sphingomonas sp., Chryseobacterium sp. and Riemerella
p., respectively.

. Conclusions

This study investigated the feasibility of the combined process
AF-BAF) as a novel method for TNT degradation. We drew the
ollowing conclusions:

1) The combined process could effectively degrade TNT. At the
stable reaction operation stage, TNT was not detected in the
effluent of the system. Moreover, the system was effective in
reducing environmental shock.

2) TNT was reduced to 2-amino-4,6-dinitrotoluene (2-
A-4,6-DNT), 4-amino-2,6-dinitrotoluene (4-A-2,6-DNT),
2,4-diamino-6-nitrotoluene (2,4-DA-6-NT) and 2,6-diamino-
4-nitrotoluene (2,6-DA-4-NT) during the anaerobic process.
The anaerobic degradation products contained more 2,6-DA-4-
NT than any other metabolite. Besides, no organic compounds
were found in the effluent of the system.

3) As the electron donor, ethanol played a major role in the TNT
biodegradation. More than twice the theoretical requirement of
ethanol was necessary to achieve a high TNT degradation rate
(above 97.5%).

4) The Haldane model effectively described the anaerobic
biodegradation of TNT could be described by qmax, Ks and Ki
were 0.76 mg (h g)−1, 100.16 mg l−1 and 62.20 mg l−1, respec-

tively.

5) The microorganisms were successfully immobilized on the sur-
face of the carrier. After the anaerobic reactor had operated 40
days, a large number of globular microorganisms were found
on the surface carrier using ESEM.

[

[

ained using a neighbor-joining algorithm. Bootstrap values are based on 1000 runs

(6) The special bacterial for TNT degradation may have generated
during the 150-day domestication with TNT. The dominant
species for TNT degradation were identified using PCR-DGGE.
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