

# Use of Vapor Phase Corrosion Inhibitors for Galvanized Steel Protection

AUTHORS Andrea Hansen Alla Furman Margarita Kharshan Boris Miksic

# Use of Vapor Phase Corrosion Inhibitors for Galvanized Steel Protection

- Introduction
- Evaluation of Corrosion Protection Provided by VpCI Additive to Galvanized Steel
  - Protection Ability Tested With Tafel Plots
  - Linear Polarization Resistance (LPR) Stud
  - Immersion Corrosion Test
    Testing In Pilot Cooling Tower
- Toxicity Testing
- Conclusions
- References

# Introduction

- Cost of corrosion (~\$276 billion)

  - pulp & paper industry at 6 billion
- Galvanizing-The coating of zinc onto steel
- Vapor Phase Corrosion Inhibitors (VpCI)
  - biodegradable, low toxic products which can be incorporated into conventional water-treatment programs to provide effective corrosion protection to different metals.

    The studied VpCI additive is a synergistic blend of salts of carboxylic acids and alkalinity builders.

# **Evaluation of Corrosion Protection Provided** by VpCI Additive to Galvanized Steel

- Protection Ability Tested With Tafel Plots
- Linear Polarization Resistance (LPR) Study
- Immersion Corrosion Test
- Testing In Pilot Cooling Tower

# **Protection Ability Tested With Tafel Plots**

Test Equipment
Potentiostat/Galvanostat "Versastat" with corrosion software model 352/252
SoftGorr<sup>1M</sup>
Zinc working electrode
Graphite counter electrode
SSCE reference electrode

Test Parameters  $Tap\ water:\ pH = TDS = ppm,\ Conductivity = \mu S$   $CaCO_3\ in\ Tap\ water:\ pH = TDS = ppm,\ Conductivity = \mu S$ 

Polarization was applied 20 minutes after the working electrode was immersed in electrolyte

| Sample                  | Corrosion<br>Rate in Tap<br>Water, mpy | Protection<br>Ability, % | Corrosion Rate in<br>1000ppm CaCO <sub>3</sub><br>Solution, mpy | Protection<br>Ability, % |
|-------------------------|----------------------------------------|--------------------------|-----------------------------------------------------------------|--------------------------|
| 100ppm VpCI<br>additive | 1.06                                   | 86.5                     | 0.24                                                            | 87.2                     |
| Control                 | 7.8                                    | -                        | 1.8                                                             | -                        |

| - |  |  |
|---|--|--|
| - |  |  |
| - |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |

# Linear Polarization Resistance (LPR) Study

## **Test Parameters**

1000ppm VpCI was added into two different types of water

| Sample Corrosion Rate, mpy Ability, % Sample Corrosion Rate, mpy Ability, % Sample Rate, mpy Ability, % Water with VpCI 0.2242 89 Water with VpCI 0.3924 98 Control Water 2.061 - Control Water Control Water Control Rate, mpy Ability, % Control Water Control Rate, mpy Ability, % Control Water Control Rate, mpy Ability, % Control Rate, | 90:10 Deionized : Tap water, pH 6.63;<br>Conductivity 183µS |        | Tap water, pH 7.44; Conductivity<br>356µS |        |        |                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------|-------------------------------------------|--------|--------|--------------------------|
| with<br>VpCI         0.2242         89         Water with<br>VpCI         0.3924         98           Control         2.061         Control         17.74         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample                                                      | Sample |                                           | Sample |        | Protection<br>Ability, % |
| 2.061 - 17.74 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | with                                                        | 0.2242 | 89                                        |        | 0.3924 | 98                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             | 2.061  | -                                         |        | 17.74  |                          |

# **Immersion Corrosion Test**

Immersion at 40°C for 10 days

VpCI was added at 25wt% to two VpC1 was added at 25wt% to two different water treatment program formulas (TF 1 and TF 2) both containing a blend of antiscalants (phosphates, maleates, phosphonates, acrylates) and azoles. These mixtures were then added to tap water at 2000ppm

| Material                | Protection<br>Ability, % |
|-------------------------|--------------------------|
| TF 1 + VpCI<br>additive | 94.3                     |
| TF 2 + VpCI<br>additive | 94                       |
| TF 1                    | 74                       |
| TF 2                    | 31                       |
| Control<br>(tap water)  | 9 .)                     |

# **Testing In Pilot Cooling Tower**

Test Equipment RSD Towers, Model 005 Cooling Tower 16 GPM recirculation rate, 1.5 inch inlet and outlet diameter

Test Parameters

45-50°C tap water with 2.3-2.5 cycles of concentration
pH = 8.6-8.8, TDS = 1250-1300ppm, Conductivity = 1850-2000µS
Continuously treatment of 250ppm for 1 week, 100ppm for 1 week and then 50ppm during the following 6 weeks

| Solution Tested      | Corrosion Rate, mpy | Protection Ability, % |
|----------------------|---------------------|-----------------------|
| TF 1 + VpCI additive | 0.59                | 89                    |
| TF 1                 | 4.49                |                       |
|                      |                     |                       |

# **Toxicity Testing**

Aquatic Toxicity Test: VpCI was also tested for aquatic toxicity with several species.

| Species           | NOEC    | LOEC    | $\mathrm{LC}_{50}$ | $IC_{25}$ |
|-------------------|---------|---------|--------------------|-----------|
| M. Beryllina      | 1000ppm | 2500ppm | -                  |           |
| M. Bahia          | 600ppm  | 1000ppm | - (                | •         |
| Fathead<br>minnow | -       | -       | 1700ppm            | 140ppm    |
| C. dubia          | -       | -       | 1100ppm            | 90ррт     |

| T :::           | T       |
|-----------------|---------|
| <b>Toxicity</b> | Lesting |
|                 |         |

- Primary Skin Irritation Test: VpCI additive was applied at 4000ppm to skin of rabbits. The final Primary Irritation Index (PII) was 0, the best score possible in this test.
- Theoretical LD-50 (rat): >4000ppm

# CONCLUSION

VpCI additive is safe for handling and use in cooling water treatment programs. At concentration of use it remains safe for many species allowing discharge according to local authorities.

# Conclusion

The advantage of using a VpCI additive in cooling water was tested with various methods including immersion tests, pilot cooling tower tests and electrochemical analysis.

These tests all show the effectiveness of a vapor phase corrosion inhibitor based additive (VpCI additive) to protect galvanized steel against corrosion.

VpCIs which are safe and environmentally acceptable for use can be added to traditional water-treatment programs to significantly improve corrosion protection of galvanized steel

# References Corrosion Cost and Preventive Strategies in the United States. FHWA-RD-01-156, 2001 Gerhardus H. Koch, Ph.D., Michiel P.H. Brongers, Neil G. Thompson, Ph.D., Y. Paul Virmani, Ph.D. White Rust: An Industry Update and Guide Paper, AWT (2002) ASTM G 5-87, Standard Reference Test Method for Making Potentiostatic and Potentiodinamic Anodic Polarization Measurements ASTM G 31-72, Standard Practice for Laboratory Immersion Corrosion Testing of Metals ASTM G 1-90, Standard Practice for Preparing, Cleaning and Evaluating Corrosion Test Specimens Lab project # 9693, ViroMED Biosafety Laboratories Environmental Enterprises, USA, and Environmental Consulting & Testing