

4119 White Bear Po Phone: (651) 429-1 Toll Free: (800) 4-C cortecvci.com • cort	arkway, St. Paul, MN 55110 USA 1100, Fax: (651) 429-1122 :ORTEC, E-mail: info@cortecvci.com teclaboratories.com					
•	Evaluation of Conaplat Green VCI Film					
То:	Walter Pregelj Luboks Cochabamba 1684 Villa Rosa (Pilar), BA					
For:	Josã Speranza Sotyl Av. Honorio Peyrredã n 2400 Villa Rosa (Pilar) BA					
From:	Cortec Corporation Laboratories 4119 White Bear Parkway St. Paul, MN 55110					
сс:	Boris Miksic Dario Dell'Orto Cliff Cracauer Bob Boyle					
Project	#:14-198-1125					
Results	reported by: Liz Austin					
Approv	Liz Austin Senior Lab Technician Eric Uutala Technical Service Manager M. Mharshan —					

Margarita Kharshan Vice President of R&D

Date: September 30, 2014

Background: It was requested that the Green VCI film manufactured by Conaplat be tested against VpCI-126 to compare the corrosion protection properties of the two films.

Sample Received: Green Film manufactured by Conaplat, no identifying markings, ok condition, received 08-29-14, labeled 14-198-1125

Method:

- 1) VIA Test Method, CC-027
- 2) Razor Blade Test Method, CC-004*
- 3) Paragon 1000 FTIR, Method CC-006
- 4) Mechanical Properties (Performed at Cambridge):
 - a. Breaking Factor, ASTM D882-02*
 - b. Tensile Strength at Break, Yield Strength, and Elongation at Break, ASTM D882-02*
 - c. Puncture Resistance, MIL-STD-3010, TM 2065*
 - d. Tear Strength, ASTM D1922-06a*

*Cortec Laboratory is not accredited for the test marked

Materials:

- 1) Cambridge Mechanical Property Testing Equipment
- 2) VIA test kit
- 3) Razor blade test kit
- 4) Polyethylene film (control), 3 mil
- 5) VpCI-126, batch #33569 and 35253
- 6) Paragon 1000 FTIR

Procedure:

Film Corrosion Testing

- 1) The razor blade, VIA and FTIR tests were performed according to standard procedure.
- 2) The razor blade results were graded according to visual evaluation. At least two out of three panels must pass. A pass is considered to have no visible sign of corrosion while a failing panel will have signs of corrosion.
- 3) Mechanical properties were tested at Cortec Advanced Film Division in Cambridge, MN.

4) VIA test results were graded according to the following system:

Results:

Razor Blade Test- Carbon Steel Panels

Film Sample	Panel #1	Panel #2	Panel #3	Pass / Fail
Green Conaplat Film	Fail	Fail	Fail	Fail
VpCI-126	Pass	Pass	Pass	Pass
Control	Fail	-	-	-

Razor Blade Test- Copper Panels

Film Sample	Panel #1	Panel #2	Panel #3	Pass / Fail
Green Conaplat Film	Fail	Fail	Fail	Fail
VpCI-126	Pass	Pass	Pass	Pass
Control	Fail	-	-	-

VIA Test					
Film Sample	Plug #1	Plug #2	Plug #3	End Result	
Green Conaplat Film	Grade 0	Grade 0	Grade 0	Fail	
VpCI-126	Grade 3	Grade 3	Grade 3	Pass	
Control	Grade 0	-	-	-	

Mechanical Properties

Property		Test Method	Units	Conaplat Green Film	Plain PE Film	VpCI 126 35253	
Caliper		ASTM D6988	mil	4.19	3.22	3.30	
Brooking Easter	MD	ASTM D882-02	lbe/in	9.01	15.78	12.30	
Dicaking Factor	TD	A0 111 2002 02	105/111	7.29	11.68	11.50	
Tensile Strength at Break	MD	4 STM D882-02	nsi	1028.00	2390.00	3803.98	
Tensile Ottength at Dieak	TD	A0 111 2002 02	p3i	984.00	1839.00	3917.06	
Elongation at Break	MD	ASTM D882-02	0/_	582.50	930.26	682.71	
Elongation at Break	TD	A3 TWI D662-02	/0	640.63	755.05	803.65	
Vield Strength	MD	ASTM D882-02	psi	772.88	866.85	1297.02	
field Strength	TD	A31W D002-02		613.84	577.58	1577.24	
Dart Dran Impact Registeres		ASTM D1709-04,	grams	65.10	580.24	614.53	
Dait Diop impact Resistance		Test Method A					
Puncture Resistance	Outside	MIL-STD-3010,	lbf	4 94	4 26	5 55	
	Layer	TM 2065		101	7.57	1.20	0.00
Puncture Resistance	Inside	MIL-STD-3010,	lbf	lbf 5.0	5.01	4 74	5.60
Functure Resistance	Layer	TM 2065			5.01	4.74	5.00
Tear Strength	MD	ASTM D1022-06A	gram force	241.60	624.00	368.00	
iea Stieligti	TD	AG INI D 1922-00A		1209.60	1548.80	1184.00	
Coefficient of Eriction			static	0.11	0.10	0.39	
Coemcient of Fliction		AG 11VI D 1094	kinetic	0.43	0.22	0.41	

Results relate only to the items tested

Figure 1. VIA test results for the Green Conaplat Film

Interpretations:

- 1. Corrosion Test Results:
 - a. The test results (razor blade and VIA) determined that tested VpCI-126 provides good contact and vapor-phase corrosion protection.
 - b. The corrosion test results for the Conaplat Green film determined it did not provide contact or vapor-phase corrosion protection. The test results determined that it failed both tests.
- 2. Film Properties:
 - a. FTIR results all determined that the Green Conaplat film contains salt of organic acid, probably sodium benzoate which is not considered VCI.
- 3. Mechanical Property Test Results:
 - a. The ASTM D 882 results determined that when VpCI-126 is stretched, the force at which the film will become irreversibly deformed is higher than the other films. The force required to break VpCI-126 when it is being stretched is also higher than the other films.
 - b. The ASTM D 882 results for the Conaplat Green film determined that it required less force to break it when being stretched, the percent it elongated was also the lowest of the three films when stretched, and the force required to break the film is the lowest of the films tested.
 - c. The dart drop test results (ASTM D 1709) determined the Conaplat Green film was much more brittle than the control or VpCI-126 films. The test result showed that VpCI-126 is tough as the control film.
 - d. The puncture resistance (MIL-STD-3010) was similar for the three tested films.
 - e. The tear strength test results determined that VpCI-126 and the Conaplat Green Film had similar results, with VpCI-126 having slightly better results for the machine direction.
 - f. VpCI-126 has a higher coefficient of friction (static) than the two other films. The Coefficient of friction (kinetic) between the Green Conaplat film and VpCI-126 is pretty similar. The control film had the lowest coefficient of friction (kinetic and static) of all the films.

Project #:14-198-1125 Page 6 of 6 September 30, 2014 © 2014, Cortec Corporation. All Rights Reserved. Copying of these materials in any form without the written authorization of Cortec Corporation Laboratory is strictly prohibited.