

• C C

. • . . • 0 •

. • • • . .

0 • • •

. .

• •

. • •

.

• • . . • • 0

0 • .

. 0 0

> . .

0 0 To:

cc:

4119 White Bear Parkway, St. Paul, MN 55110 USA Phone: (651) 429-1100, Fax: (651) 429-1122 Toll Free: (800) 4-CORTEC, E-mail: info@cortecvci.com

cortecvci.com • corteclaboratories.com

Evaluation of Competitor Films Dario Dell'Orto From: Cortec Corporation Laboratories 4119 White Bear Parkway St. Paul, MN 55110 **Boris Miksic Cliff Cracauer**

Project #: 14-253-1125.bis

Results reported by: Brian Benduka

Brian Benduha Lab Technician

M. Rhareha

Approved by:

Margarita Kharshan Vice President of R&D

Date: November 24, 2014

- **Purpose:** To evaluate the corrosion protection and mechanical properties of the eight submitted films, and compare to VpCI-125 and VpCI-126 film.
- Samples Received: The following samples were received on 11-6-14 in ok condition:
 - 1. VCI Brasil, Aquatem Dana, 2mil orange film
 - 2. VCI Brasil, Aquatem Dana, 2mil brown film
 - 3. VCI Brasil, Aquatem Dana, 4mil blue film
 - 4. Lord, 3.5mil blue film
 - 5. Lord, 3mil blue film
 - 6. Refiate (Cortec) VCI 126 blue film, 5.5mil
 - 7. Lord, 2mil green film
 - 8. Embraco, 4.5mil green film
- Method: VIA Test, CC-027 Razor Blade Test, CC-004* SO₂ Test, CC-003* Mechanical Properties* FTIR analysis, CC-006 *Cortec Laboratory is not accredited for the tests marked
- Materials:VIA test kit
Razor blade test kit
SO2 Test kit
Paragon 1000 FTIR
VpCI-125 Green film 4mil (Batch #36092)
VpCI-126 Blue film, 4mil (Batch #36225)
Control film (plain, non-vci PE film 3mils)

Procedure: The tests were conducted according to standard procedures for each test.

Results:

Razor Blace Test- Carbon Steer Laneis									
Sample #	Description of Film	Panel #1	Panel #2	Panel #3	Pass / Fail*				
1	VCI Brasil, Aquatem Dana, orange film	Pass	Pass	Fail	Pass				
2	VCI Brasil, Aquatem Dana, brown film	Pass	Pass	Fail	Pass				
3	VCI Brasil, Aquatem Dana, blue film	Fail	Fail	Pass	Fail				
4	Lord, blue film	Fail	Fail	Pass	Fail				
5	Lord, blue film	Pass	Pass	Fail	Pass				
6	Refiate (Cortec) VCI 126 blue film	Pass	Pass	Pass	Pass				
7	Lord green film	Pass	Pass	Pass	Pass				
8	Embraco green film	Pass	Pass	Fail	Pass				
-	VpCI-125 film	Pass	Pass	Pass	Pass				
-	VpCI-126 film	Pass	Pass	Pass	Pass				
-	Control film	Fail	-	-	-				

Razor Blade Test- Carbon Steel Panels

*Note- two out of three panels must pass for passing results

Results:

Nazor Diade Test- Copper Failers									
Sample #	Description of Film	Panel #1	Panel #2	Panel #3	Pass / Fail*				
1	VCI Brasil, Aquatem Dana, orange film	Fail	Fail	Fail	Fail				
2	VCI Brasil, Aquatem Dana, brown film	Fail	Fail	Fail	Fail				
3	VCI Brasil, Aquatem Dana, blue film	Fail	Fail	Pass	Fail				
4	Lord, blue film	Fail	Fail	Fail	Fail				
5	Lord, blue film	Fail	Fail	Fail	Fail				
6	Refiate (Cortec) VCI 126 blue film	Pass	Pass	Pass	Pass				
7	Lord green film	Fail	Fail	Pass	Fail				
8	Embraco green film	Fail	Fail	Fail	Fail				
-	VpCI-125 film	Pass	Pass	Pass	Pass				
-	VpCI-126 film	Pass	Pass	Pass	Pass				
-	Control film	Fail	-	-	-				

Razor Blade Test- Copper Panels

*Note- two out of three panels must pass for passing results

VIA Test

Sample #	Description of Film	Plug #1	Plug #2	Plug #3	Pass / Fail*
1	VCI Brasil, Aquatem Dana, orange film	Grade 1	Grade 0	Grade 0	Fail
2	VCI Brasil, Aquatem Dana, brown film	Grade 2	Grade 1	Grade 1	Fail
3	VCI Brasil, Aquatem Dana, blue film		Grade 1	Grade 0	Fail
4	Lord, blue film	Grade 2	Grade 2	Grade 0	Fail
5	Lord, blue film	Grade 0	Grade 0	Grade 0	Fail
6	Refiate (Cortec) VCI 126 blue film	Grade 2	Grade 2	Grade 2	Pass
7	Lord green film	Grade 1	Grade 0	Grade 0	Fail
8	Embraco green film	Grade 1	Grade 0	Grade 0	Fail
-	VpCI-125 film	Grade 2	Grade 2	Grade 2	Pass
-	VpCI-126 film	Grade 3	Grade 3	Grade 2	Pass
-	Control film	Grade 0	Grade 0	Grade 0	Fail

*Note- all samples were tested using two 1in. x 6in. strips of film

VIA Test Grades (Grade 2 or 3 are passing) All three plugs must be grade 2 or better to pass the test

		$\bigotimes_{\mathbf{Grade } 0} \left(\bigotimes_{\mathbf{Grade } 0} \bigotimes_{\mathbf{Grad } 0} \bigotimes_{\mathbf{Grad } 0} \bigotimes_{\mathbf{Grad } 0} \bigotimes_{\mathbf{Grad } $
Grade 0:	Blind test No corrosion inhibiting effect	
Grade 1:	Blind test	Grade 1
0 1 0	Minute corrosion inhibiting effect	
Grade 2:	Blind test Medium corrosion inhibiting effect	
Grade 3:	Blind test	Grade 2
	Good corrosion inhibiting effect	

Results:

	5021050				
Sample #	Description of Film	Panel #1	Panel #2	Panel #3	Pass / Fail
1	VCI Brasil, Aquatem Dana, orange film	Grade 1	Grade 1	Grade 1	Fail
2	VCI Brasil, Aquatem Dana, brown film	Grade 0	Grade 0	Grade 0	Fail
3	VCI Brasil, Aquatem Dana, blue film	Grade 1	Grade 1	Grade 1	Fail
4	Lord, blue film	Grade 2	Grade 1	Grade 1	Fail
5	Lord, blue film	Grade 4	Grade 4	Grade 4	Pass
6	Refiate (Cortec) VCI 126 blue film	Grade 4	Grade 4	Grade 4	Pass
7	Lord green film	Grade 0	Grade 0	Grade 0	Fail
8	Embraco green film	Not enough sa	Not enough sample was provided for this test		
-	VpCI-125 film	Grade 4	Grade 4	Grade 4	Pass
-	VpCI-126 film	Grade 4	Grade 4	Grade 4	Pass
-	Control film	Grade 0	Grade 0	Grade 0	Fail

SO₂ Test

SO2 Test Grades- Grade 3 and 4 are passing

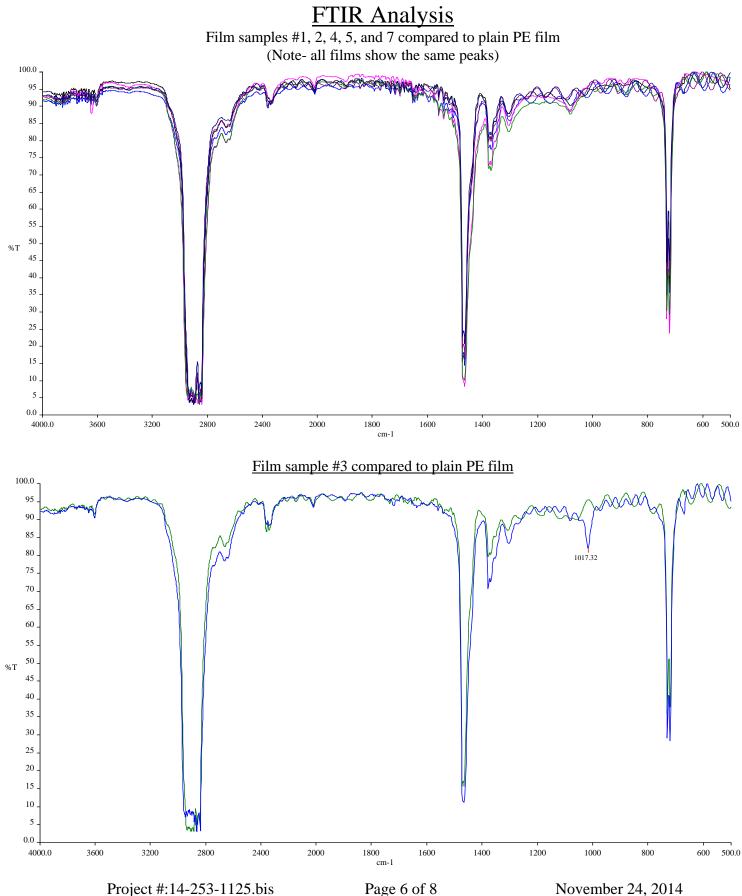
Grade 0 - Extensive corrosion covering 25% or more of panel surface

Grade 1 - Moderate corrosion covering 10-25% of panel surface

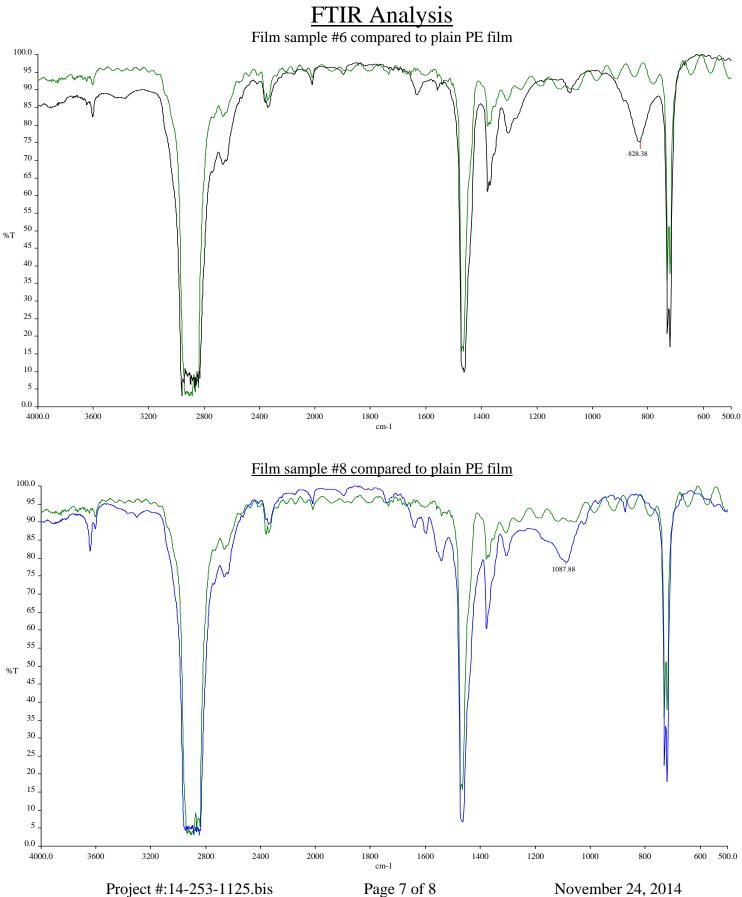
Grade 2 - Slight corrosion 5-10% of panel surface

Grade 3 - Very slight corrosion 0-5% of panel surface

Grade 4 - No visible corrosion on panel surface


Mechanical Properties- 2 Mil Comparison Chart									
Property		Test Method	Units	Sample #1	Sample #2	Sample #7	VpCI-126		
Caliper		ASTM D6988	mil	1.99	2.11	1.85	2.21		
Breaking Factor	MD	ASTM D882-02	lh e /in	8.00	8.64	6.72	10.03		
Dreaking Factor	TD	ASTIVI D002-02	lbs/in	7.18	8.10	7.67	8.52		
Tensile Strength at Break	MD	ASTM D882-02	nsi	4173.00	4155.00	3728.00	4288.80		
Tensile Strength at Dreak	TD	ASTIVI D002-02	psi	3735.00	3934.00	4013.00	3850.31		
Elongation at Break	MD	ASTM D882-02	%	736.72	728.59	740.63	694.17		
Elongation at break	TD	AS TIVI D002-02	%	832.81	852.03	829.53	817.03		
Yield Strength	MD	ASTM D882-02	psi	2459.94	2441.14	1918.03	1354.13		
	TD	ASTIVI D002-02		1763.82	1820.50	1888.13	1560.12		
Puncture Resistance	Outside	MIL-STD-3010, TM 2065	lbf	3.74	3.65	3.45	3.73		
Puncture Resistance	Inside	MIL-STD-3010, TM 2065	lbf	3.63	3.74	3.24	N/A		
Toor Strongth	MD		grom force	112.40	53.20	8.20	59.80		
Tear Strength	TD	ASTM D1922-06A	gram force	603.20	259.20	833.60	24.60		
Coefficient of			static	0.06	0.15	N/A	0.51		
Friction		ASTM D1894	kinetic	0.31	0.25	N/A	0.59		
	left			N/A	N/A	N/A	5.61		
Seal Strength	center	ASTM F88-99	lbs/in	N/A	N/A	6.06	4.28		
	right			N/A	N/A	N/A	5.47		

Mechanical Properties- 3 Mil Comparison Chart										
Property		Test Method	Units	Sample #4	Sample #5	VpCI-126	VpCI-125			
Caliper		ASTM D6988	mil	2.99	3.00	3.30	3.11			
Breaking Factor	MD	ASTM D882-02	lbs/in	12.08	11.24	12.30	12.32			
Dieaking Facioi	TD	ASTIVI D002-02	105/111	12.06	11.43	11.50	13.13			
Tensile Strength at	MD	ASTM D882-02	nci	4141.00	4262.00	3803.98	4032.00			
Break	TD	ASTIVI D002-02	psi	3993.00	4160.00	3917.06	4181.00			
Elongation at Brook	MD	ASTM D882-02	%	647.66	804.53	682.71	662.50			
Elongation at Break	TD	ASTIVI D002-02	70	927.24	878.75	803.65	564.06			
Yield Strength	MD	ASTM D882-02	psi	2388.09	1933.35	1297.02	1505.99			
field Strength	TD			1613.88	1738.96	1577.24	1847.91			
Puncture Resistance	Outside	MIL-STD-3010, TM 2065	lbf	4.54	4.94	5.55	4.94			
Puncture Resistance	Inside	MIL-STD-3010, TM 2065	lbf	5.68	5.12	N/A	5.01			
Toor Strongth	MD	ASTM D1922-	grom force	169.60	396.80	368.00	544.00			
Tear Strength	TD	06A	gram force	544.00	676.80	1184.00	1235.20			
Coefficient of		ASTM D1894	static	0.09	0.11	0.39	0.04			
Friction		ASTIVI D 1094	kinetic	0.15	0.18	0.41	0.23			
	left			N/A	N/A	8.55	7.76			
Seal Strength	center	ASTM F88-99	lbs/in	N/A	5.37	6.67	6.09			
	right			N/A	N/A	8.97	7.52			


Mechanical Properties- 4 Mil Comparison Chart

Property		Test Method	Units	Sample #3	VpCI-126	VpCI-125
Caliper		ASTM D6988	mil	3.80	4.00	4.25
Breaking Factor	MD	ASTM D882-02	lbs/in	11.89	17.92	14.15
Dreaking Factor	TD	AS TIVI D002-02	105/111	10.18	17.77	15.79
Tensile Strength at Break	MD	ASTM D882-02	nci	3196.00	4412.83	3538.00
Tensile Strength at Dieak	TD	AS TIVI D002-02	psi	2802.00	4055.48	3947.00
Elongation at Break	MD	ASTM D882-02	%	490.31	709.63	639.38
Elongation at break	TD	AS TIVI D002-02	70	841.51	866.82	789.85
Yield Strength	MD ASTM D882.02		noi	2482.17	1269.43	1772.53
neid Strength	TD	ASTM D882-02	psi	1833.26	1482.04	1647.79
Puncture Resistance	Outside	MIL-STD-3010, TM 2065	lbf	5.53	8.39	5.18
Puncture Resistance	Inside	MIL-STD-3010, TM 2065	lbf	5.97	N/A	5.01
Tear Strength	MD	ASTM D1922-	grom force	761.60	374.00	848.00
real Strength	TD	06A	gram force	988.80	1696.00	1497.60
Coefficient of Friction		ASTM D1894	static	N/A	0.57	0.18
		A31M D1094	kinetic	N/A	0.60	0.22
	left			N/A	N/A	5.53
Seal Strength	center	ASTM F88-99	lbs/in	11.05	10.81	N/A
	right			N/A	N/A	6.56

Project #:14-253-1125.bis Page 5 of 8 November 24, 2014 © 2014, Cortec Corporation. All Rights Reserved. Copying of these materials in any form without the written authorization of Cortec Corporation Laboratory is strictly prohibited.

© 2014, Cortec Corporation. All Rights Reserved. Copying of these materials in any form without the written authorization of Cortec Corporation Laboratory is strictly prohibited.

© 2014, Cortec Corporation. All Rights Reserved. Copying of these materials in any form without the written authorization of Cortec Corporation Laboratory is strictly prohibited.

Interpretations: 1) Film Sample #6 was the only submitted film with Cortec's logo on it, and was the only film tested out of eight that passed all of the corrosion testing. This film compares equally in corrosion protection when compared to VpCI-126 and VpCI-125 film. However, not enough film samples were provided for mechanical properties testing. All of the other seven submitted films do not provide sufficient corrosion protection to pass all of the tests. VpCI-126 and VpCI-125 film offer much better corrosion protection.

2) Based on the FT-IR spectra, the samples # 1-5 and #7 do not show the presence of corrosion inhibitors. The FT-IR graphs for #8 showed the presences of corrosion inhibitor, probably sodium benzoate, but not in a sufficient amount. This can explain the failure of mentioned films in corrosion tests.

3) Mechanical properties are attached.